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Motivation:

* Humans and primates outperform the
best machine vision systemes.

» The goal — building a system that
emulates object recognition in the cortex.



Computational principles of the
ventral stream of visual cortex

Image: Wikimedia
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The Model

S1 = C1 » S2 » C2
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S1 layer

» Corresponds to the simple cells of the
orimary visual cortex (V1).

°* '™ Hubel & Wiesel

e Gabor filters are used to model their
receptive fields.




2D Gabor filter

2D Gaussian Cosine grating Gabor filter
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Gabor filter parameters
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Examples taken from http://matlabserver.cs.rug.nl/
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Effect of Gabor filter on Natural
Images

Examples taken from
http://matlabserver.cs.rug.nl/



S1 layer

* A battery of filters is
applied on the grayscale
image. 4 orientations (0,
45,90 & 135) and 16
scales are used, resulting
in 64 different maps.

» The distribution of the
filters’ parameters is
adjusted to match the
distribution of
parameters of monkey’s
parafoveal V1 simple
cells.
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C1l Layer

=

- Corresponds for complex cortical cells.
These cells exhibit some tolerance to size
and position shifts.

Two S1 maps
with the same
orientation and
adjacent scales.
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C1 Layer

S1 C1
» 8 Scales bands (pairs i
of S1 scales) are '
pooled. With 4

orientation per each
bend, we get 32
maps.

* Parameters are again
fitted to receptive
fields of monkey’s
complex cells.

Large Scale



S2 Layer

» Uses N prototypes - previously learnt image

patches.

» For each scale band, each prototype Pi is
compared to all crops of the current image.

Current C1 map

 —
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X Pi S2

Measure match

by
RBF response
forms one point
on S2 map



Radial Basis Function (RBF)

rzexp(—,BHX —-P 2)

X is current image in C1 format, in a specific
scale band and position.

Pi is previously learnt patch in C1 format.

B is tuning parameter. 7
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Figure is adapted from Michael Fink’s neural computation course
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S2 Layer

e For N prototypes, 8N
S2 maps are
produced.




C2 Layer

» For each prototype
Pi, maximum value is
taken from the entire
S2 lattice.

* For N previously
learnt patches, C2 is
a N-tuple.
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Overview
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Prototype selection

* Prototypes can be sampled from the
positive training set (weakly supervised
learning) or from a random set of natural
images (unsupervised learning).

* I[mage patches are extracted at random
positions and sizes and stored in C1
format.



Classification

Classifier Classifier

SVM / GentleBoost SVM / GentleBoost

Learning = Training = Classification



Empirical Evaluation - Object
Recognition In Clutter

)

Datasets Benchmark | % features

boost  SVM

Constellation Leaves [19] 84.0 970 959
Cars [20] 84.8 0997 9.8

models by Faces [20] 96.4 982 981
Perona etal. | irplanes [20] 94.0 96.7 949
Motorcycles [20] 5.0 98.0 974

Faces [17] 0.4 Y59 953

Cars [18] 754 95.1 933

Ullman et al.s
fragments

Hierarchical
SVM-based face
detection by
Heisele et al.



Comparison with SIFT

* N reference key-points were sample from
the training dataset.

* Given a new image, the minimum
distance between all its key-points and
the N reference key-points thus obtaining
an N-tuple feature vector.

* Only SIFT descriptors used, no position
information.



Comparison with SIFT

Performance (Equilibrium point)
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Using universal features
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Empirical Evaluation — Objects

Recognition without Clutter

e Car, pedestrian and bicycles detection using
sliding window. C1 and C2 SMF’s were
tested.

e C1 SMF’s are better than all the benchmarks
at car and bicycle recognition. Histogram of
Gradients is better on pedestrians.

Benchmarks:

*Gray scale template matching
*Local Patch Correlation

*Leibe et als part-based system
*Histogram of Gradients.




Discussion

» Shortcomings
o Strengths

* What cognitive function does the model
model?



